
IoT Embedded System for Environmental Monitoring

Eugen Petac
Alexandru Constantin

“Ovidius” University of Constanța, Faculty of Mathematics and Computer Science
epetac@univ-ovidius.ro

constantin.alex96@icloud.com

Abstract

Environmental monitoring aims to provide an objective image as close as possible to reality.

This paper proposes an IoT embedded system for temperature, humidity and dewpoint remote
monitoring. The main contribution of this paper is in providing a robust and reliable multithreaded

client-server application called THbot. Our solution offers security and reliability for data storage

and transmission, authentication, and architecture support for cloud integration. The management

of the IoT embedded system is done safely and securely. The results of our THbot solution can be

easily integrated into environmental control applications.

Key words: Environmental Monitoring, IoT, Embedded System, Dewpoint

J.E.L. classification: L8, M1, Q5

1. Introduction

Weather affects the human body (Lee et al., 2018), which clearly notices the impact of sudden

temperature and humidity changes. For values lower or higher than normal of the temperature-

humidity index, which is also called thermal comfort index, cellular-level changes occur, and the

overall health status of the human body is altered (Mora et al., 2018). Besides those extreme

temperature values, the dewpoint is used to evaluate the thermal comfort index (Pfluger, Feist and

Neher, 2013). The dewpoint corresponds to the temperature at which the water vapor concentration

in the air is saturated. Weather affects us, humans, but affects animals (Silva and Passini, 2017) and
plants (Xu, Yan and Tang, 2015) as well. For a correct diagnosis, specialized literature

recommends gathering data regarding the state of the body or the state of the plants related to the

weather state. Thus, indoor and outdoor environmental monitoring over a time period becomes a

major concern for the quality of life (Jayaratne et al., 2018).

In this paper we propose a robust system called THbot, with THbot_Server and THbot_Client

parts, as an IoT embedded system for temperature, humidity and dewpoint remote monitoring. As

an Internet of Things (IoT) embedded system (Vermesan et al., 2018), the hardware part of
THbot_Server includes the Single Board Computer (SBC) Raspberry Pi Zero WH (Adafruit.com,

2019), the DHT11 humidity and temperature sensor (Learn.Adafruit.com, 2019), and a 0.96-inch

OLED screen based on the SSD1306 chip. The screen displays the temperature and humidity

values and it can be used as an alternative for the client application when we are situated in the

proximity of the SBC. Our THbot software application, presented in Section 3, is a distributed

client-server application developed using the C# and Python programming languages and the .NET

Framework. This implements a remote monitoring system for temperature, humidity and dewpoint

values. The application offers security and reliability for data storage and transmission,
authentication, and architecture support for cloud integration (Jassas et al., 2017). The application’s

main achievements are the stability and reliability of the transmitted data regardless of the

geographical position of the servers and clients, and also the ease of use. The THbot system is able

to generate statistics and graphs regarding the monitoring status of a certain day and hour. Some

results are presented in Section 4.

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

487

mailto:epetac@univ-ovidius.ro
mailto:constantin.alex96@icloud.com

2. Theoretical background

According to Gartner “The Internet of Things (IoT) is the network of physical objects that

contain embedded technology to communicate and sense or interact with their internal states or the

external environment” (2019). Each object that is part of the IoT system is equiped accordingly,
and can send and receive data. The object must be capable of capturing data, usually through

sensors, and must be capable of sending the captured data through the internet. IoT has become a

network of billions of smart devices which connects people, systems and other applications

together, in order to collect, process and share data.

Created by Microsoft, C# (Nagel, 2018) is a object-oriented programming language, suitable for

developing web-based and desktop applications. Derived from the C and C++ programming

languages, including influences from other languages, most notably Java, C# allows for developing
robust industrial-grade applications, which work under a variety of operating systems, being

adequate for systems which target real-world applications as well.

The most important features that recommend C# for such applications are: features that enable

direct implementation of software components, such as properties, methods and events; the

possibility of working in an environment with multiple languages; automated management for used

system memory; the possibility of using features and APIs which belong to the operating system.

.NET Framework (GoalKicker.com, 2018) is an environment that allows for developing and

running applications and web services in a cross-platform manner. The automated memory
management, the interoperability of the languages and the security and portability of the

applications are the main features of the architecture of this environment. .NET Framework has two

main components, Common Language Runtime (CLR) and Base Class Library (BCL). CLR is the

execution environment of the applications, which also handles memory management and

exceptions. BCL covers a large area of programming work, including user interfaces, connections

to databases, web application development, network communcations and others. The code of the

library is precompiled, being encapsulated in methods, which programmers can call in their own
programs. In turn, methods belong to classes, and classes are organized in namespaces. To create

applications, programmers combine their own code with BCL code.

Created by programmer Guido van Rossum, Python (Jaworski and Ziade, 2016) is a

multipurpose, portable, interpreted, high-level programming language, which makes use of the

object-oriented programming paradigm, and allows for imperative, functional or procedural

programming. Also, it is a dynamically typed language, which combines coding power and a clean

syntax. The Python API provides many modules for a large number of functionalities, from basic
functionalities such as string and file handling, to complex functionalities such as processes and

thread handling, sockets, serializations, and many more. Python is used in embedded systems,

automatization, web applications, artificial intelligence, data analysis, etc.

Healthcare, hydro-climatic and agro-climatic researches, tourism (Scott and Lemieux, 2010),

civil buildings (Kharseh et al., 2017) and the automotive industry (Pillmann et al., 2017), are some

fields of activity that have major interest in monitoring temperature, humidity and dewpoint values.

The dewpoint corresponds to the temperature at which the water vapor concentration in the air is

saturated. The dewpoint’s value depends mostly on the relative humidity and temperature of the
environment. To obtain the dewpoint temperature, denoted with TD and expressed in Celsius

degrees, we used the following relationship (McNoldy, 2015):

TD = 243.04*(LN(RH/100)+((17.625*T)/(243.04+T)))/(17.625-LN(RH/100) -

((17.625*T)/(243.04+T)))

where:
T - stands for the environment temperature in Celsius degrees;

RH – stands for relative humidity in percentages;

LN – stands for natural logarithm.

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

488

3. Research methodology

Our THbot research system is a distributed client-server application developed using the C# and

Python programming languages and the .NET framework.

Named THbot_Server, the server side of the application allows for local and remote
connections. Opting for the multithreaded programming paradigm, the overall speed of the

application is improved, and system resources are optimally used. The use of multiple threads

allows for the parallelization of the application tasks. The Raspberry Pi Zero WH board uses the

Raspbian operating system. Raspbian is an open-source Debian-based Linux operating system, its

main advantages being its low system resources usage and the official support from the Raspberry

Pi Foundation. The systemd system manager (Debian.com, 2019), which comes preinstalled on

Raspbian, provides parallelization capabilities as well as the possibility of configuring and
monitoring system services.

THbot_Client is the client side of the application. Developed as a client for the Windows

operating system, THbot_Client allows connections to multiple servers. It is capable of retrieving

data from THbot_Server, to process them, to create graphs and send notifications to the users. For a

reliable communication between THbot_Client and THbot_Server, the application is based on

Transmission Control Protocol (TCP). To secure the communication between THbot_Server and

THbot_Client the AES-GCM algorithm is used, which stands for Advanced Encryption Standard

(AES) in GCM mode (Galois/Counter Mode). THbot_Client can run in a private IoT cloud, local or
remote connection.

3. Results

3.1. THbot Server

After the installation and configuration of the Raspbian operating system, the SBC is ready to
host the server application. It has three main components:

• The THbot.py Python script that reads and displays sensor data.

• The THbotServer.exe server application, written in C#, that allows for new client connections

and processes their requests. Figure 1 represents the class diagram of the server application.

• The server system service, which allows for starting, stopping and restarting the server.

Figure no. 1. THbotServer class diagram

Source: Authors’ processing using NClass

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

489

3.1.1. THbot.py
The script THbot.py uses the DHT11 Python library which enables communication with the

sensor in order to retrieve temperature and humidity values. The commands “sudo apt-get update”

and “sudo apt-get install rpi.gpio” once run, install the RPi. GPIO package which is mandatory

for the DHT11 library to work.

After the installation of all required packages and libraries, and after the initialization of the

GPIO pins, we are able to read temperature and humidity values from the GPIO24 pin. Data

retrieval is performed once every one second, considering the technical specifications of the
DHT11 sensor (Mouser.com, 2019).

3.1.2. THbotServer.exe
The THbotServer application is written on a machine that runs the Windows operating system.

It is a console application, which utilizes the .NET framework and the C# programming language.

THbotServer generates logs for every important event. After a client connection, a new thread is

created, on which the server will process messages coming from the client and send response

messages accordingly. Further, a description of the application will be presented.

3.1.2.1 The TCPServer class
The Start method allows the server to accept new connections from clients. The passed

parameters are the port number on which the server will listen for new connections and the

encryption/decryption password of the sent and received messages, which also works as an

authentication password, being only known by the owner of the server and the clients that wish to

connect. The ProcessClientRequests method analyses messages from each client individually.
The following messages are the ones the server is looking after:

“!connection” – the server responds with a confirmation message that the connection was

established successfully;

“!temp” – the application will open a new process in which it will obtain the result displayed by

the THbot.py script, and the result will be send to the client. This message marks the fact that the

client wanted to obtain the sensor values at a given time;

“!info” – the server sends a message regarding its version, uptime and the number of connected
clients;

“!exit” – this message tells the server that a client wishes to disconnect.

When a message received from a client can’t be decrypted successfully, which means an

unknown encryption/decryption password and implicitly a wrong connection password was used,

the authentication is unsuccessful, and the server closes the connection with the client. The Stop

method allows the server to be stopped. The WriteToLog method is used to generate logs for

important server events.

3.1.2.2 The AES class
The AES class makes use of the Bouncy Castle API, which provides access to encryption

algorithms and other encryption-related resources. The sent and received messages are crypted and

decrypted using the EncryptString and DecryptString methods. The Advanced Encryption

Standard (AES) algorithm is used, in Galois/Counter Mode (GCM) mode (Gueron, Langley and

Lindell, 2017). Each plain text message is divided into 128-bit blocks, called generic data. If the

last block is incomplete, it will be padded. If the message is divided in uniform 128-bit blocks, a
dummy 128-bit block will be appended. For client-server communication, AES-GCM provides

three security services, confidentiality, integrity, and authentication. The passwords used by the

clients and the server are derived into secure keys using PBKDF2 (Password-Based Key Derivation

Function 2), a password hashing algorithm (Iuorio and Visconti, 2018).

3.1.2.3 The Program class
In order to launch the THbotServer application the Program class is used. From the “server.cfg”

file which is located in the same directory as the application’s executable file, the port number and
the encryption/decryption password are obtained, then the server is started. The password must

have between 15 and 30 characters in length.

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

490

In order to run the THbotServer.exe executable on Raspbian, the Mono software platform
(Mono-project.com, 2019) was used, which helps in developing cross-platform applications using

the C# programming language and .NET Framework. Mono can be installed on Raspbian using the

“sudo apt-get install mono-complete” command, and allows applications created on Windows to

run on operating systems that belong to the Linux family without needing to develop a special

version dedicated to Linux.

3.1.3 Running the sever as a system service
In order to run THbot Server as a system service, systemd was used. This is a system and

service manager for Linux-based operating systems. With systemd we can start, stop and restart

THbotServer, and most importantly, we can run THbotServer automatically after the system starts.

The THbotServer.service file contains the necessary instructions. The commands that copy the

THbotServer.service file in the systemd directory and update the list of services managed by

systemd are “sudo cp THbotServer.service /etc/systemd/system” and “sudo systemctl daemon-

reload” respectively and can be found in the install_app_services.sh bash script, which installs the

system services for both the server and the screen.
To make server interaction easier, the following bash scrips were created, which have the role to

manage THbot Server:

 enable_startup.sh – the THbot Server service will automatically start after the system starts

after running this script;

restart_server.sh – restart the server service;

server_status.sh – check server status and displayed messages;

start_server.sh – start the server service;
stop_server.sh – stop the server service.

Every script has its permisssions set up by the following command: “chmod u+x

<script_name>.sh”.

3.1.4 Displaying values on the screen
In order to display temperature, humidity and dewpoint values on the screen and read them

when located in the SBC’s proximity, an OLED screen was used, which boasts a 0.96-inch
diagonal and a resolution of 128x64 pixels. This screen is based on the SSD1306 chip and provides

an I2C connection, low energy consumption (0.08W max) and a very good color contrast. The

advantage which this solution provides is that there is no need for a client application when located

in the SBC’s proximity. The Python script that displays values on the screen is called screen.py and

makes use of the Adafruit-SSD1306 library to display text on screen, via the I2C connection. To

obtain sensor data the DHT11 library is used. The dewpoint temperature is calculated using the

formula that was presented earlier. To run screen.py as a system service, a similar approach to

THbot Server was used, by creating the THbotScreen.service file, registering the THbotScreen
service, and by creating the screen_enable_startup.sh, start_screen.sh, stop_screen.sh,

restart_screen.sh and screen_status.sh bash scripts, and finally setting the permissions of these

scripts.

3.2 Thbot_Client
Written using the C# programming language and the .NET framework, Thbot_Client allows for

connections to Thbot_Server, which provides temperature, humidity and dewpoint values.
Thbot_Client has as its main classes the TCPClient class and the AES class which is identical to

the AES class found in the server’s code, Section 3.1.2.2.

3.2.1 The TCPClient class
Values passed to the constructor of the class are the IP address and port number of the server, as

well as password for the messages transmitted between the client and server. In order to retrieve the

data provided by the server, the GetData method is used after the connection to the server is

established successfully by using the ConnectionConfirmation and GetServerVersion methods.
The GetServerVersion method allows the client to retrieve server information such as software

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

491

version, server uptime and the number of connected clients. The methods which belong to the
TCPClient class are used in the UI class, which displays the graphical user interface.

4. Experimental Results

4.1 Running THbot_Server

For the SBC (Raspberry Pi Zero WH) which hosts THbot_Server and is connected to the

internet through a router (Figure 2), we need to enable port forwarding on the port which will be

used to accept connections and messages from clients. THbot_Server is configured to run as a

system service.

Figure no. 2. THbot Data communication

Source: Authors’ contribution

There is the possibility of starting, stopping and restarting the server manually, using the scripts

mentioned in Section 2. For this, a SSH connection to the SBC is needed, which can be achieved

with the Hyper or PuTTY applications. The server_status.sh script allows us to check the status of

the server (Figure 3).

Figure no. 3. Status of the THbotSever

Source: Authors’ processing with server_status.sh

With the WinSCP application we can check server logs, which are located in the “logs”

directory (Figure 4).

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

492

Figure no. 4. Viewing server logs with WinSCP

Source: Authors’ processing with WinSCP

4.2 Running THbot_Client
The graphical User Interface (UI) of THbot_Client is depicted in Figure 5. After inserting the

appropriate data in the corresponding fields, by pressing the “Connect” button a connection to the

desired server is established. The “Server Information” button helps in obtaining server

information such as software version, server uptime and the number of connected clients. To

retrieve data regarding temperature, humidity and dew point temperature values, the “Get Data

Now” button is used.

Figure no. 5. Main UI for the THbot Client

Source: Authors’ contribution

After selecting a time interval measured in minutes, pressing the“Set” button will yield value

readings at the selected time interval, and notifications can be sent. The “Temperature Chart” tab
displays a graph which can have different styles, column, spline or bar. The “Save Chart” button

saves the chart as a .png file image which depicts the state of the graph when the button was

pressed. An example graph is shown in Figure 6. The graph shows the relationship between the

dewpoint temperature and the temperature and humidity percentage, over a period of time,

according to the relationship mentioned in the 2.1.1 Section.

The “Humidity Chart”, “Dew Point Chart” and “Stacked Chart” tabs work in a similar way.

Placed at the bottom of the UI, the “New Connection Page” button will open a new connection
page, which allows for a new connection to a server.

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

493

The “Load Connection Information from File” button allows for adding new connection pages.
These pages have the “Name”, “IP”, “Port” and “Key” fields automatically filled in with the

information read from a text file chosen by the user.

The text file contents should comply with the following format: <SBCDeviceName

WithoutWhitespaces>[space]<ServerIP>[space]<PortNumber>[space]<Password>. The “Send

to Tray” button will send the application to background, and the application icon will be shown in

tray.

Figure no. 6. Temperature, Humidity Percentage and Dewpoint Temperature curves over a period of time

Source: Authors’ contribution

5. Conclusions and Future Work

Environmental monitoring is a decisive factor in maintaining a good quality of life and

preserving materials. The THbot application uses hardware which is readily available at a

reasonable cost, and that is well supported by entities like the Raspberry Pi Foundation and the

enthusiast community. The main contribution of this paper is in providing a robust and reliable
multithreaded client-server application. Our THbot software application is easily modifiable and

extendable, and it’s written with programming principles and readability in mind. The application

achieves its goals, but the field of IT and programming constantly proposes improvements. One

way of improving the application would be the addition of a gas and pressure sensor, to further

improve the quality of the retrieved data. Another way of improving the application would be the

addition of a CSI camera module, which would be helpful in monitoring movements, to further

extend the functionality and feature set of the application.

6. References

• Adafruit.com, 2019. Raspberry Pi Zero WH, [online] Available at: https://www.adafruit.com/

product/3708 [Accessed 24 Apr. 2019].

• Debian.com, 2019. systemd, [online] Available at: https://wiki.debian.org/systemd [Accessed 24 Apr.

2019].

• Gartner, Inc., 2019. Internet of Things, [online] Available at: https://www.gartner.com/it-

glossary/internet-of-things/ [Accessed 24 Apr. 2019].

• GoalKicker.com, 2018.. NET Framework Notes for Professionals. [online] Available at:

https://books.goalkicker.com/DotNETFrameworkBook/ [Accessed 20 Apr. 2019].

• Gueron, S., Langley, A. and Lindell, Y., 2017. AES-GCM-SIV: Specification and Analysis, Report

2017/168. [online] Cryptology ePrint Archive. Available at: https://eprint.iacr.org/2017/ 168.pdf

[Accessed 22 Apr. 2019].

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

494

• Iuorio, A. F. and Visconti, A., 2018. Understanding Optimizations and Measuring Performances of

PBKDF2. [online] International Conference on Wireless Intelligent and Distributed Environment for

Communication, Springer, pp. 101-114. Available at: https://eprint.iacr.org/2019/161.pdf [Accessed

22 Apr. 2019].

• Jassas, M., Mathew, J., Azim, A., and Mahmoud, Q. H., 2017. A framework for extending resources

of embedded systems using the Cloud. [online] 2017 IEEE 30th Canadian Conference on Electrical

and Computer Engineering (CCECE), pp. 1-5. Available at: https://www.researchgate.

net/publication/317723164_A_framework_for_extending_resources_of_embedded_systems_using_th

e_Cloud [Accessed 22 Apr. 2019].

• Jaworski, M. and Ziade, T., 2016. Expert Python Programming. Birmingham, UK: Packt Publishing

Ltd.

• Jayaratne, R., Liu, X., Thai, P., Dunbabin, M. and Morawska, L., 2018. The influence of humidity on

the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. [online]

Atmospheric Measurement Techniques, 11(8), pp.4883-4890. Available at: https://www.atmos-meas-

tech.net/11/4883/2018/amt-11-4883-2018.pdf [Accessed 22 Apr. 2019].

• Kharseh, M., Ostermeyer, Y., Nägeli, C., Kurkowska, I. and Wallbaum, H., 2017. Humid Wall:

Review on Causes and Solutions. [online] Conference Proceedings of World Sustainable Built

Environment Conference 2017 Hong Kong. Available at: http://wsbe17hongkong.hk/download/

WSBE17%20Hong%20Kong%20-%20Conference%20 Proceedings.pdf [Accessed 22 Apr. 2019].

• Learn.adafruit.com, 2019. DHT temperature & humidity sensors. [online] Available at:

https://learn.adafruit.com/ dht/overview [Accessed 24 Apr. 2019].

• Lee, M., Ohde, S., Urayama, K., Takahashi, O. and Fukui, T., 2018. Weather and health symptoms.

[online] International journal of environmental research and public health, 15(8), p.1670. Available

at: https://www.mdpi.com/ 1660-4601/15/8/1670 [Accessed 24 Apr. 2019].

• McNoldy, B. D., 2015. Calculate Temperature, Dewpoint, or Relative Humidity. [online] University

of Miami. Available at: http://bmcnoldy.rsmas.miami.edu/Humid ity.html [Accessed 24 Apr. 2019].

• Mono-project.com., 2019. Mono, [online] Available at: https://www.mono-project.com/ [Accessed 24

Apr. 2019].

• Mora, R. and Meteyer, M., 2018. Using Thermal Comfort Models in Health Care Settings: A Review.

[online] ASHRAE Transactions, 124. Available at: https://commons.bcit.ca/besys/files/

2018/08/Thermal-comfort-health-care.pdf [Accessed 22 Apr. 2019].

• Mouser.com, 2019. DHT11 Humidity & Temperature Sensor, [online] Available at:

https://www.mouser.com/ds/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf

[Accessed 24 Apr. 2019].

• Nagel, C., 2018. Professional C# 7 and .NET Core 2.0. 7th

ed.

New York: John Wiley & Sons Inc.

• Pfluger, R., Feist, W., Tietjen, A. and Neher, A., 2013. Physiological impairments of individuals at

low indoor air humidity. [online] Gefahrstoffe Reinhaltung der Luft. Available at:

https://passipedia.org/_media/picopen/ low_humidity.pdf [Accessed 22 Apr. 2019].

• Pillmann, J., Wietfeld, C., Zarcula, A., Raugust, T. and Alonso, D.C., 2017. Novel common vehicle

information model (cvim) for future automotive vehicle big data marketplaces. [online] 2017 IEEE

Intelligent Vehicles Symposium (IV), pp. 1910-1915. Available at: https://arxiv.org/ pdf/1802.09353

.pdf [Accessed 22 Apr. 2019].

• Scott, D. and Lemieux, C., 2010. Weather and climate information for tourism. [online] Procedia

Environmental Sciences, 1, pp.146-183. Available at: https://www.researchgate.net/ publication/

236018338_Weather_and_Climate_ Information_for_Tourism/ [Accessed 22 Apr. 2019].

• Silva, D.C. and Passini, R., 2017. Physiological responses of dairy cows as a function of environment

in holding pen. [online] Engenharia Agrícola, 37(2), pp.206-214. Available at:

http://www.scielo.br/scielo.php?script= sci_arttext&pid=S0100-69162017000200206 [Accessed 22

Apr. 2019].

• Vermesan, O., Eisenhauer, M., Serrano, M., Guillemin, P., Sundmaeker, H., Tragos, E.Z., Valino, J.,

Copigneaux, B., Presser, M., Aagaard, A. and Bahr, R., 2018. The Next Generation Internet of

Things–Hyperconnectivity and Embedded Intelligence at the Edge. In: O. Vermesan and J. Bacquet,

ed., Next Generation Internet of Things. Distributed Intelligence at the Edge and Human Machine-to-

Machine Cooperation, 1st ed. Delft: River Publishers, pp. 19-102

• Xu, Y., Yan, B. and Tang, J., 2015. The effect of climate change on variations in dew amount in a

paddy ecosystem of the Sanjiang Plain, China. [online] Advances in Meteorology. Available at:

https://www.hindawi.com/journals/ amete/2015/793107/ [Accessed 22 Apr. 2019].

�Ovidius� University Annals, Economic Sciences Series

Volume XIX, Issue 1 /2019

495

