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Abstract 
 

Main goal of this paper is to present a decision support system (DSS) for operation and 

maintenance (O&M) of photovoltaic power (PV) systems which are integrated with battery 

systems. Such DSS essentially necessitates inclusion of Big Data analytics that will be utilized to 

maximize profit from power generation and consumption in a PV-battery integrated system.  

 

Key words: Big Data, decision support systems, photovoltaic systems, operation and maintenance 

J.E.L. classification: O13, C55, C82, C88  
 
 

1. Introduction 

 

One of the goals of the Energy Union (EU) strategy is to become the world leader in renewables 
(RES), the EU targets for 2030 define a more ambitious plan for RES integration. By the end of 
2016, the worldwide total photovoltaic systems (PV) installed power is 303 GW, with 355 GW 
estimation for 2017 and 613 GW for 2020. Battery systems are among the promising technology 
that supports penetration of PV. Both operational and maintenance (O&M) of PV battery systems 
should be taken into account in the profit maximization problem. While operational optimization is 
focussing on short term (day-ahead, week-ahead), maintenance aspects focus more on mid- and 
long-term optimization (reduce downtime of the PV system, extend the PV lifetime, decrease cost 
of O&M, enhance safety and reduce risks). 

Optimal O&M must strike a balance between maximising production and minimising cost, 
knowing that the O&M costs can be up to $40 kW/year. Also, a well-designed O&M can improve 
the average performance ratio of PV from 88% to 94% (NREL, 2016). O&M costs are between 30 
and 70% of OPEX that represents 11-25% of the lifetime costs (Solar, 2016). A comprehensive 
planning and delivery of PV O&M reinforce confidence in the long-term performance and revenue 
capacity. O&M main activities consist of: monitoring, maintenance, reliability and management.  

 
2. Literature review 

 

Currently for PV O&M several types of software solutions are used, especially for monitoring 
large-scale PV power plants (Avisolar, 2017), (Greenbyte, 2017) based on data collected from 
SCADA systems. Well-known producers (Siemens, 2017), (ABB, 2017) provide more advanced 
solutions, including forecasting and asset management, accessible via cloud based web-services. 
Another complex solution that provides sensors integration and visual analytics for two types of 
PV, on ground and rooftops, is described in (Ecoaxis, 2017). These solutions are not developed on 
open and scalable platforms to be customize for different types of PV and does not currently 
integrate image processing or optimization algorithms to provide a complete support of O&M 
activities. 
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Several scientific papers approach the topics of big data management in case of PV O&M 
(Escobedo et al, 2017), (Daliento et al, 2017), (Shiva Kumar et al, 2015), including PV-battery 
operation optimization (Lu et al, 2005), (Weniger et al, 2014) and image processing (Mehta et al, 
2017), (Ahmed et al, 2013). Apart from existing solutions, the proposed DSS prototype is an 
original solution, adaptable to different types of PV-battery systems that includes complex 
algorithms and methods to support O&M decisions.  

The proposed solution is an informatics prototype for the acquisition, processing, management 
and analysis of large amounts of data collected from PV-battery systems from different types of 
sensors in order to support decisions regarding O&M. For wider implementation of the solution, 
our approach consists in a three-layer architecture of the DSS. Thus, the stakeholders of the 
prototype are: owners of PV-battery systems (prosumers, communities, micro-grids and industrial 
generators), O&M operators and dispatching centres. Currently, the prototype is under 
development, but the main solution is set up and its architecture is established. 

 

3. Big data approach 

 

One of the main challenge for an efficient PV O&M is the amount of data that should be 
collected and analysed that has big data characteristics: volume, velocity, variety and veracity of 
data. Considering a PV of 10 MW with 50,000 solar panels (200W each), one measurement/minute 
of several parameters (e.g. timestamp, energy, active power, tilt, temperature, dust, irradiance, 
current and voltage magnitude). It gives 23 GB of data/day, or 8.4 Tb of data/year. Adding data 
provided by other components (e.g. weather stations, inverters, current transformers, etc.), we can 
estimate that a PV-battery system may produce more than 10 Tb/year. Regarding its velocity, while 
this amount will not normally put any stress on a server or communication network, we still have to 
process 50,000 individual transactions/minute, amount which is, most of the times, too high for a 
relational database server. As for variety, the PV may be of different type, manufacturer, 
generation, etc., producing data with heterogeneous formats and structures. In addition to data 
collected from PV-battery system, some other data sources may be added, such as thermographic 
cameras for failure detection or video surveillance cameras for detecting the cloud cover degree. 
Veracity may come from missing data due to sensors faults that require a validation and correction 
process to enable accurate decision regarding PV O&M. Also, O&M require real-time monitoring, 
diagnose and predictive analytics, optimization, forecast and advanced Key Performance Indicators 
(KPI) reporting. Therefore, data generated by PV-battery systems require Big Data solutions to 
support decisions regarding PV O&M.  

 
4. Methodology and concept: Three - layer architecture of the DSS 

 

The proposed informatics prototype is developed on open platforms, modular, with several tiers 
for Big Data management, models and analytics to provide advanced monitoring and decision 
support for different types and sizes of PV (residential rooftops <10kW, commercial/industrial 
rooftops and shade structures <1000kW; ground-mounted systems with tracking or fixed 
>1000kW). For wider implementation of the solution, our approach consists in a three-layer 
architecture of the DSS: L1-prosumers and community PV; L2-large-scale photovoltaic power 
plants; L3-dispatching centres for PV (Figure 1). 
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Figure no. 1. The three-layer architecture of the proposed prototype 

 

 
Source: Authors’ contribution 

 

By designing and developing specific models and algorithms for each of these layers and 

combining them into a modular cloud-based solution, we provide an original informatics prototype 

for decision-support regarding different PV O&M. The challenges of this concept are mainly 

related to massive data acquisitions and processing, designing and scaling the models and 

algorithms, developing Big Data analytics for diagnose, predictive analysis, KPI and real-time 

monitoring.  

For each layer, several tiers (such as: Big Data acquisition and sensors integration, management 

and analytics, models for O&M and cloud computing development) will be configured and 

implemented (Figure 2). This approach is beyond state of the art that often address only one of the 

layers and doesn’t provide integration of several PV O&M.  
 

Figure no. 2. The Big Data tiers 

 
Source: Authors’ contribution 

 

T1. Big data acquisition and sensors integration (DAS tier). For an efficient data integration, it 
is important to rapidly process data, avoiding it to become obsolete. The challenge is to collect, 
validate and process big data at high speed. The level of difficulty grows as the granularity 
increases. To manage these issues, we proposed an open framework to connect sensors with 
different communication protocols, controllers, data loggers and images. The framework collects 
and integrates data from different sources: i) environment: cell/module and air temperature, wind 
speed, humidity, elevation, plane of array and module irradiance, cloud cover, soiling; ii) 
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production: active power, voltage and current magnitude, power factor, inverters, availability and 
temperature; iii) external conditions: curtailment events, loss of grid 
availability/quality/constraints; iv) reliability and maintenance: incident data (events, outages), 
fault codes and description, affected component and location, breaker trips, blown fuses status data; 
v) components status: breakage, wiring, loss of production, hot spots, advanced spectral imaging 
from visual inspection gathered with thermographic cameras or unmanned aerial vehicles (UAVs). 
Also, SCADA systems are among the most important data source in PV-battery systems. 
Small/simple or large/sophisticated, all PV-battery systems have a SCADA systems. They provide 
generation and load level of the PV-battery system including the switch positions. Historical 
generation series of PV systems along with weather data will be utilized in day-ahead generation 
forecast of PV systems. Data for historical generation series is extracted from SCADA of PV-
battery systems. The DAS tier is implemented on an edge computing architecture to perform data 
processing at the edge of the network, thus reducing the communications bandwidth between 
sensors and the main data centre in cloud. 

Through our integration framework, we collect data, store it on a distributed, scalable file 
system, such as HDFS (Hadoop File System) and develop query patterns with processing engines 
(Hive, Drill, Impala or Presto) in the DMA tier of the prototype. 

T2. Big Data management and analytics (DMA tier). One of the main challenges for Big Data 
management is addressing data quality. Thus, the proposed solution requires a consistent data 
governance and information management process in place to ensure the data quality. Our approach 
consists in developing an Extract, Transform & Load (ETL) process that extract data from the DAS 
tier, place it in memory of the processing cluster by establishing a real time context in order to 
extract continuous inputs as data streams. Then, a transformation process is applied, statistics are 
calculated and records are checked for consistency. The transformed data is loaded into the central 
NoSQL database which relies on distributed system for better reliability and scalability. 

Another challenge is to find meaningful information in the data and provide advanced analytics, 
machine learning (ML) and optimization algorithms. Our approach is to divide and split data into 
several subsets for enabling multidimensional modelling, spatial analysis and data mining. For 
multidimensional, subject oriented and historical analyses, data is aggregated and loaded into a 
central data warehouse (DW). Analytic solutions require data governance, data quality and 
stewardship that are absolutely critical and are achieved only through the DW. On top of the DW, 
we’ll develop in the next phase of implementation a set of algorithms for analytical purposes and 
KPIs reporting. A modelling and simulation technique will be utilized, not only to identify failures 
in the system, but optimizing location and amount of sensors in the system by calculating the PV 
generation for each module and comparing it with actual generation. Also, we’ll implement 
connectors in DAS tier to allow integration with on premises Energy Management Systems, 
Enterprise Resource Planning or financial applications already installed at PV owners. 

T3. Models for operation (MO tier). For performance monitoring, MO tier includes a technical 
KPI framework that determines the following indicators: energy performance index, equipment 
forced outage rate, system availability, degradation rate at different component or 
system/frequency levels (Hill et al, 2015). The KPI framework also includes (Mokri et al, 2014): 
performance ratio (PR), temperature-corrected PR, yield, power performance index, operating 
efficiency, equipment equivalent availability factor, equipment equivalent forced-outage factor. 
The originality of the KPI framework consists in a comparative analysis at the PV component 
monitoring level (inverter, array, and module) that triggers alerts, detecting possible fault types and 
their impact, and provides recommendations for preventive maintenance. It provides information 
about the nature of discovered problems, their location and, apart from the existing solutions, the 
analysis is performed at DMA tier on real-time data collected at the module level (not on average 
data). Thus, the analysis provides a precise information on each component of PV that is used for 
advanced module-level diagnose and prognostic, providing a complete image of the PV health 
status. 

T4. Models for maintenance (MM tier). This tier includes a methodology for setting up the PV 
maintenance plan (preventive, condition-based and corrective) based on monitoring results, 
diagnostic and prognostic algorithms. Scheduling and frequency of preventive maintenance will be 
scaled for each layer and is influenced by equipment type, environmental conditions, warranty 
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terms, etc. Preventive maintenance is often carried out due to alerts provided by the PV monitoring 
activities, including thermal imaging inspections. 

By detecting thermal variations between modules, any critical defect that is causing a reduction 
in module efficiency can be signalled, in addition to the proactive detection of hot spots and 
potential fire risks. By implementing the algorithms proposed in DAS tier, the prototype is able to 
identify module defects and proactively detect the following classes of array faults: i) module 
faults: hot spots, diode failures, full module failures, junction-box heating, cracked modules, 
ethylene vinyl acetate fogging, yellowing, antireflective coating degradation, acute soiling, etc.; ii) 
array and system faults: fuse, module-connector and inverter failures, reverse polarity wiring, 
major maximum power-point tracking faults; iii) racking and balance of system: major racking 
shifts, systemic shading, major erosion. Generally, inverter faults are the most common cause of 
system downtime in PV (Coleman, 2013). Therefore, the preventive maintenance of inverters 
should be treated as a centrally important part of the O&M plan. 

Condition-based maintenance uses real-time data from DAS tier to schedule preventive 
measures such as cleaning, or to head off corrective maintenance problems by anticipating failures 
or catching them early. Corrective Maintenance plan will optimize the stocked spare parts in order 
to facilitate a rapid response in the event of equipment failure. The stocks should be justified by the 
benefit they bring in reducing plant downtime and avoiding revenue loss. Based on the failure rate 
of PV components, we will develop an optimum spare parts strategy depending on the size of the 
PV, local availability of replacement parts and the potential for sharing critical equipment across a 
number of plants under common ownership. 

Fixed and variable costs of strong spare parts in the storehouse will be included in the 
formulation to ensure cost-benefit analysis. Maintenance and replacement costs will be compared 
in the optimization process. Spare part optimization is a mixed integer programming (MIP) 
problem. Solution of such problems necessitates decomposition techniques as described above. 
Optimization techniques that will be utilized in optimizing short-term scheduling of PV-battery 
system will also be considered in spare part optimization problem. Results of the spare part 
optimization problem will be validated by probabilistic failure analysis, in which optimum 
operational decisions will be simulated for the system. 

The maintenance plan will also include a reliability model based on incident reports and PV 
block diagram with component failure trends and root-cause analyses. For PV maintenance and 
reliability purposes, we will also calculate KPIs, such as: preventive and corrective loss indicators 
(Oprea et al, 2017), planned and unplanned outage factor, failure rate, mean time between failures, 
mean time to repair (Hills et al, 2015). We will propose ML algorithms for module-level diagnostic 
and prognostic based on data generated by each module to predict imminent faults before they 
occur and make short-term O&M decisions and yield prognosis. 

T5. Cloud computing development (CC tier). The prototype will be implemented on a cloud 
computing platform offering big data analytics through web-services for high availability and less 
investment, considering the following steps: i) a software development life cycle model will be 
adopted, taking into account the various already identified requirements; ii) development of an 
informatics prototype for PV O&M, targeting the users for each of the three layers, specific models 
and algorithms will be design and implemented for each layer; iii) extensive testing of the 
prototype informatics solution will be conducted at layer level. 
 
5. Conclusion 

 
The proposed prototype represents an original scientific approach for different scale of PV 

O&M activities (prosumers and communities, commercial and industrial), processing big data 
through models and algorithms to support semi-automatic O&M activities by using alerts, triggers, 
recommendations, diagnostic and prognostic faults, optimization of spare parts stock and 
maintenance plan. The expected impact of the prototype is to improve the PV O&M by: increasing 
performance of the PV and revenue, reducing unscheduled downtime, increasing the PV lifetime, 
decreasing maintenance costs and enhancing safety operation. 

 

�Ovidius� University Annals, Economic Sciences Series 

Volume XVIII, Issue 1 /2018

108



By improving O&M activities, PV will be better integrated, considering the expectations related 
to the rate of return investment and environmental impact due to the fact that the PV output will 
increase. Accurate forecast of PV output reduces the operation uncertainty, maintain power quality 
and increase the penetration level of PV into the power system. 

Reliable estimates of the output variation are needed at energy distribution for system stability 
and dimensioning. Properly monitored PV plant can provide the most accurate information and 
hence the best estimates of uncertainty for partners in the energy ecosystem. Moreover, production 
uncertainty should be known in the PV production bidding in order to avoid penalties of 
undelivered energy. By optimizing the spare parts stocks, the downtime and costs will decrease. 
Also, by optimizing the PV-battery operation, the revenue will increase by improving the market 
strategies. The proposed solution can bring competitive advantages for PV owners over similar 
solutions that do not involve big data management. They will benefit from improved accuracy and 
reliability of big data analytics to support their decisions regarding O&M, asset management, 
buyout options, investments and further extension of their business as a consequence of higher 
bankability. 
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